IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

1433

Exploiting Implementation Diversity and Partial
Connection of Routers in Application-Specific

1

Network-on-Chip Topology Synthesis
Minje Jun, Member, IEEE, Won W. Ro, Member, IEEE, and Eui-Young Chung, Member, IEEE

Abstract—This paper proposes a novel application-specific Network-on-Chip (NoC) topology synthesis method, in which the partial
connection and the implementation diversity of routers are exploited. NoC has emerged as a promising solution to future system-on-chip
(SoC), and many researchers have focused on the automatic synthesis of NoC topology. In our observation, those NoC topology synthesis
methods resemble the logic synthesis in the following sense: both the NoC topology synthesis and the logic synthesis determine the
connections among the components where the components are the routers in the former and the logic cells in the latter. However, an
outstanding difference is that the existing NoC topology synthesis methods consider only a single implementation for each size of router,
whereas modern logic synthesis tools utilize multiple implementations of a cell to produce better netlist by the feature called technology
mapping. To tackle this drawback, we propose a novel NoC topology synthesis methodology where the implementation diversity of routers
is exploited to produce optimal topologies in terms of area and/or power consumption. Two different approaches, the post-process
approach and the in-process approach, are proposed for exploiting the implementation diversity to provide flexibility between synthesis
time and design quality. Also, the proposed method for characterizing and modeling routers makes it feasible to consider the
implementation diversity even when the partial connection of routers is considered during the synthesis. Compared to the method in which
the implementation diversity is exploited but the partial connection is not, the experimental results demonstrate that the proposed method
can reduce the power consumption by up to 67.8% and 40.0% on average. On the other hand, compared to the method in which the partial
connection is exploited but the implementation diversity is not, the power consumption is reduced by up to 12.0% and 3.4% on average.

Index Terms—On-chip networks, system-on-chip (SoC), architecture, synthesis

<+

INTRODUCTION

UE to ever-increasing complexity of System-on-Chip

(SoC) integration and poor scaling of metal wire, on-chip
communication architectures have been eagerly researched by
both academia and industry for the past decade. Since on-chip
interconnection network, also called Network-on-Chip (NoC),
was proposed in [1], it has emerged as a promising solution to
many-core processors and very large scaled SoCs. In fact, it was
already shown that NoC is now ripe enough to be applied to
real-world products [2]. The underlying philosophy of NoC is
to replace the traditional ad-hoc on-chip wiring with more
structured and modular architectures with routers and links.
There is a variety of research topics for NoC including the
topology, packet routing, router design, and application map-
ping, and they are well summarized and addressed in [3].
While most of the early researches on NoC had focused on

® M. Jun was with the Department of Electrical and Electronic Engineering,
Yonsei University, Seoul 120-749, Korea. He is now with System LSI
Business, Samsung Electronics Co., Hwasung, Gyenggi-Do 445-701, Korea.
E-mail: minje.jun@samsung.com.

® W. W. Ro and E.-Y. Chung are with the Department of Electrical and
Electronic Engineering, Yonsei University, Seoul 120-749, Korea.
E-mail: {wro,eychungl@yonsei.ac.kr.

Manuscript received 28 Dec. 2011; revised 07 Dec. 2012; accepted 12 Dec. 2012.
Date of publication 23 Dec. 2012; date of current version 09 June 2014.
Recommended for acceptance by R. Merculescu.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2012.294

general-purpose and regularly structured NoCs [1], [4], [5],
recent works have shown that NoC is advantageous to the
systems which are dedicated to or emphasized on specific
applications, and that the customized irregular structures
outperform the general-purpose regular ones for those systems
[6]-[8]. In order to fully exploit the benefit of customized
topology for application-specific systems, many researchers
have focused on the synthesis of customized topology for
target applications [8]-[11], [12]-[19]. The existing topology
synthesis methods have aimed at the algorithms (or design
space exploration) to find the best topology for the target
application(s). They typically require several information as
inputs, such as physical distances among IPs and router library
which contains physical characteristics (delay, area, and
power) of on-chip routers of all sizes.

In our observation, the NoC topology synthesis problem is
analogous to the logic synthesis from several aspects; the logic
synthesis produces netlist composed of various logic gates,
while the NoC topology synthesis produces network composed
of routers of various configurations. Also, modern NoC topol-
ogy synthesis methods consider the physical placement of IPs
(i.e. floorplan information) to accurately reflect the wire effect,
which resembles the contemporary logic synthesis tools con-
sidering the cell placement to produce more realistic and better
netlist (e.g. Synopsys Topographical Technology [20]). In terms
of component library, pre-characterized router models are
used in the NoC topology synthesis methods, which are
obtained from either actual implementation [8], [13] or

0018-9340 © 2012 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1434

analytical model such as Orion [21], [22]. On the other hand, the
logic synthesis uses the cell library provided by the foundries.
However, animportant point which the existing NoC topology
synthesis methods are missing is that they consider only a
single implementation of a router; that is, they characterized a
certain configuration (e.g. the number of ports) of router with a
single set of metrics such as delay, area, and power. For
example, in [8], a 4 x4 router is characterized to have
0.036 mm? area and to consume 22.16 mW from their actual
back-end implementation. However, in reality, a router can be
implemented in various ways throughout the typical RTL to
silicon design flow. On the contrary, in the logic synthesis, it
can be easily found that a cell is designed for its various
implementations, e.g. NAND2X2 to NAND2X16. Then, the
synthesis tools exploit the various implementations of the cell
during the procedure technology mapping to produce better
netlist.

To tackle this point, this paper proposes a novel NoC
topology design methodology which focuses on how to char-
acterize routers and utilize the resulting router library, unlike
the existing methods have concentrated mostly on the design
space exploration of the topological choices. Specifically, we
first propose the router characterization and modeling method,
in which the building blocks of routers are separately charac-
terized for their diverse implementations. Then, the character-
istics of an entire router are obtained from those of its building
blocks. Secondly, we propose the NoC topology synthesis
method with two different approaches for exploiting the
diverse implementations of the routers; in the post-process
approach, the topology synthesis process is done first with a
single implementation of the routers, and then the resulting
topology is optimized just once at the end of the topology
synthesis process. On the other hand, the in-process approach
tries to find the best fitting implementation of every router in
every candidate topology. In fact, we presented the idea of
exploiting implementation diversity of routers in our previous
work [23]. This work reinforces the methodology by greatly
reducing the characterization efforts, which in turn makes the
proposed idea (i.e. exploiting implementation diversity) appli-
cable to the finer-grained NoC topology synthesis proposed
in [24].

The rest of the paper is organized as follows. The related
works are summarized in Section 2. Motivational examples
and corresponding explanation are given in Section 3. The
details of the proposed NoC topology synthesis methodology
including router characterization and modeling and the NoC
topology synthesis method are presented in Section 4. The
validation of the proposed router model and the evaluation
results of our NoC topology synthesis method are demon-
strated in Section 5. Finally, the concluding remarks are given
in Section 6.

2 RELATED WORKS

In this section, we will give a brief summary of the related
works and compare them with the proposed work. Several
researchers have focused on the synthesis of customized bus
matrix for systems which are dedicated to or emphasized on
specific applications, and they showed the advantages of the
customized bus matrix over the non-customized one. S. Murali

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

et al. proposed application-specific partial crossbar,' genera-
tion methods based on mixed integer linear programming
(MILP) [25] and their heuristic clustering algorithm [26]. The
scope of their optimization is to cluster masters and slaves to
several local busses in order to minimize the central backbone
crossbar. S. Pasricha et al. improved the partial crossbar
synthesis method by involving more factors into their optimi-
zation scope, such as arbitration scheme and buffer size on each
slave port [27], and types and sizes of system memories [28].
Although these methods greatly improved the performance
and power efficiency of bus matrix architecture, they have
limitation on the scalability and cannot solve the global wire
problems such as long wire delay and routing congestion.

To resolve the drawbacks, many researchers attempted
adoption of the switch-based network in application-specific
SoCs and the custom topology synthesis methods. The topol-
ogy synthesis algorithms are based on either meta-heuristic
such as simulated annealing or genetic algorithm [16], [17],
MILP [12], [13], and their own heuristic search algorithms [5],
[8], [15], [18], [19]. Despite the differences among their algo-
rithms, the focus of these works is to efficiently explore the
search space of topological decisions of on-chip interconnec-
tion networks. In order for further improvement, the work in
[24] integrated the idea of partial crossbar into the topology
synthesis process and proved its effectiveness. All of these
works used the physical characteristics of network compo-
nents, e.g. router, obtained from either actual implementation
[5], [8], [13], [15]-[17], [24] or analytical model [18] such as
Orion [21],[22]. However, all of these works have characterized
a router with a single set of metrics, and therefore missed the
opportunity to exploit diverse implementations of the router.

In our previous work in [23], we have shown that exploit-
ing diverse implementations of routers in the NoC topology
synthesis can significantly improve the quality of results.
However, the router characterization overhead is enlarged
in the methodology since an RTL synthesis is required for
every configuration of routers.” Even though the characteriza-
tion is a one-time job and can be parallelized, the methodology
in [23] is practically unapplicable to the partial connection-
aware topology synthesis method in [24], especially when
multi-voltage and multi-corner need to be considered.

Compared to the previous works, the contributions of our
work are as follows:

* Wepropose anovel NoC topology synthesis methodology
in which diverse implementations of routers are
exploited.

+ Compared to our previous work [23], we greatly reduce
the router characterization effort by employing port-level
characterization. Unlike the works in [12] and [24] which
also used port-level characterization, our work considers
the implementation diversity of the ports. As a result, the
optimization scope of this work encompasses the advan-
tages of our previous works, i.e. the partial connection-
awareness and the implementation diversity.

1. A partially connected router (or crossbar) is a router (or crossbar) in
which not all the input ports and the output ports are connected but,
instead, only the necessary connections are physically established.

2. In [24], all 255 router configurations (1x2 to 16x16) were synthe-
sized and it took about a week.

JUN ET AL.: EXPLOITING IMPLEMENTATION DIVERSITY AND PARTIAL CONNECTION OF ROUTERS

—e—Leakage Power (mW) —=— Energy per bit (pJ/bit)

03 LE-04 3.46 2.E-05
LE-04 o 2.E-05
025 3
9.E-05 2.E-05
342
0.2 8.E-05 2.E-05
= FTE05 o i 2E-05 o
=
Z 0.15 5 zZ %
6.E-05 338 2.E-05
0.1 5.E-05 - 2E-05
3.36
4.E-05 2.E-05
90 334
3.E-05 1LE-05
0 2.E-05 332 LE-05

o2 3 4 12 3 4

Implementation Point Implmentation Point

() (b)

Fig. 1. Implementation diversity of (a) input port (fanout = 7) and (b) output
port (fanin = 3) of an on-chip router (measured at 400 MHz operating
frequency).

Note that, even though this work aims at synthesis of
irregular topology, the idea can be easily adapted to any
regular topology selection method such as [5]. Also, note that
we do not consider floorplan and packet routing (for power
reduction or deadlock avoidance) in our method since the
proposed methodology can be easily integrated on the exist-
ing floorplan-NoC topology co-synthesis methods and rout-
ing allocation methods.

3 MOTIVATION

In this section, we give examples which show the necessity of
the proposed work. First, the implementation diversity of an
input port and an output port is shown in Fig. 1(a) and (b),
respectively. The x-axis labeled ‘implementation point” indi-
cates a set of implementation constraints; in our experiment,
the longer delay constraint corresponds to the larger index of
the implementation point. With the tighter (i.e. shorter) delay
constraint, the resulting circuit tends to consume more leak-
age power and more energy for a unit bit transfer. The input
port of implementation point 1 consumes more than 7.7 times
leakage power and 1.6 times more energy for unit bit transfer
than that of implementation point 4. Since a router consists of
the ports and their connections, there exist many different
ways to implement a router.

The implementation diversity of routers may affect the
NoC topology as well. Fig. 2 shows one of the topology
synthesis results in our experiment (specifically, G1_x4).
Fig. 2(b) shows the synthesis result when only a single
implementation point (implementation point 1 in the exam-
ple) is used during the synthesis, where the resulting topology
is a single partially connected router. Fig. 2(c) shows the result
after each port in the network in Fig. 2(b) is assigned the
optimal (but not in a strict manner) implementation point by
our post-process optimization algorithm (see Section 4.5). In
this case, the post-process optimization achieves slight power
reduction from 50.43 mW to 50.10 mW without changing the
topology. On the other hand, Fig. 2(d) shows the result when
all the implementation points are used in the synthesis process
(see Section 4.5). At the first glance, the topology is different
from Fig. 2(b) and ¢, and the power consumption is reduced
by 11.2% compared to Fig. 2(b). The reason why the solution in
Fig. 2(d) cannot be found by the methods in Fig. 2(b) and (c) is
that the topology in Fig. 2(d) consumes 59.53 mW (> 50.43 mW)

1435

with the implementation point 1, and therefore is discarded
during the iteration of the topology synthesis. This suggests
that exploiting implementation diversity of routers would
enhance the quality of the NoC topology synthesis.

4 PROPOSED NOC ToPOLOGY DESIGN
METHODOLOGY

4.1 Problem Definition and Assumptions

The problem to be tackled in this work can be classified as
application-specific irreqular No Ctopology synthesis problem. The
optimization scopes of our synthesis method include 1) con-
nections among processing elements (PEs) and routers, 2) con-
nections among routers, 3) internal connections among the
ports inside routers, and 4) implementation points of the ports
inside routers.

Our synthesis process requires two inputs: 1) the building
block library Lib which contains timing, area, and power
information of the router building blocks (details will be
discussed in Section 4.4), and 2) the communication requirement
graph (CRG) which contains the communication requirements
such as bandwidth and latency constraints of the target
application, defined as follow;

* A CRG is adirected graph G(V, E), where v € V denotes

a source or a sink of a communication, i.e. a network
interface, and ¢; ; € F denotes a communication between
1€ Vand je V. bw(e) and lat(e) are the communication
volume (e.g. in MB/s) and the latency constraint (e.g. in
ns) of e, respectively.

Also, we made several assumptions to simplify the prob-
lem and concentrate on the proposed ideas. The following
conditions are assumed in this work:

+ All the routers in the network operate at a same clock
frequency/voltage, and interfacing between different
clock frequency /voltage domains is done by the network
interfaces.

+ Each communication in the CRG is routed through only
one path; that is, deterministic single-path routing is
assumed for each e € E.

* The communication requirements in CRG are static; that
is, the communication characteristics described in CRG
do not change over time or use-cases.’

With these inputs and assumptions, our NoC topology

synthesis problem is defined as follow;

given CRG and the building block library Lib,

find the NoC topology (both inter- and intra-router topol-
ogies) and the implementation points for all the building
blocks which yield the lowest cost (power consumption in
this work),

such that all the communication requirements in CRG,
i.e. bw(e) and lat(e) are satisfied.

4.2 Proposed Synthesis Methodology

Fig. 3 shows the proposed NoC topology synthesis methodol-
ogy juxtaposed with the current logic synthesis methodology.
In the logic synthesis methodology, the foundry characterizes
the cells for their various implementations (i.e. various drive

3. Our method can be extended to support dynamic traffic patterns by
capturing bandwidth and latency constraints for multiple time windows,
similar to [15], [26].

1436

implementation points: 1] 2(C] 3 4

50.43 mW

(@ (b)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

sHl

i
—

\
=1 >
=SS

44.79 mW
(59.53mW if only implementation point 1 is used)

© (d)

Fig. 2. Effect of considering implementation diversity in NoC topology synthesis, (a) CRG of the target system (G1_x4), (b) topology synthesized only
with implementation point 1, (c) implementation points of the ports are simply replaced in the topology in (b), and (d) topology is synthesized considering

all the implementation points.

strengths) and the design company uses them to produce the
best netlist (shown in the left half of Fig. 3). Inspired by the logic
synthesis methodology, in the proposed NoC topology syn-
thesis methodology, the router building blocks (the subcompo-
nents of on-chip router, input port and output port in this
work) are characterized for their various implementations, and
the resulting building block library is used in the topology
synthesis (shown in the right half of Fig. 3).

Specifically, the router building blocks are designed by the
SoC design company itself or provided by NoC IP vendors,
such as ARM, Sonics, and Arteris. Provided the RTL codes of
the building blocks, the design company performs the char-
acterization of the building blocks for their various imple-
mentations with the target foundry’s technology library.
Together with the library of the building blocks, a router
modeling method is needed to obtain the characteristics (delay,
area, and power consumption) of a router from those of the
building blocks. Since we characterize the router building

Current logic synthesis methodology

Done by foundry

Proposed NoC topology synthesis methodology

)

Done by design company or

NoC IP vendors (e.g. ARM, Sonics, Arteris) L

Configurable RTL code generator
for router building block
(e.g. various sizes of router’s
input/output ports)

Process setup

Cell characterization ‘

Building block characterizatiowl

building implementation
block point

X2

I>o 1
X4

- input 2

: port :

Do -2 ;

X4 A

= output 2

port

¥ —

cell |IRRl| celay | area

strength energy

delay | arca | energy

Logic synthesis
Router model
(obtaining router’s characteristics from
its building blocks’)

Done by design company

Done by design company

Fig. 3. The overview of the proposed NoC topology design methodology.

blocks rather than the entire routers and obtain the routers’
characteristics based on the building blocks, we can easily
take the partial connection configuration of the routers into
account. Finally, with the building block library and the router
modeling method, the NoC topology synthesis is performed
while exploiting the diverse implementations of routers to
find better topological choices.

4.3 Router Architecture

Before we explain the proposed router characterization and
modeling method, we first introduce the router architecture
used in this work.* We designed a two-stage pipeline worm-
hole router, where the stages are link traversal and input
buffering (LT) and switch allocation and crossbar traversal (CT).
If there is no contention, the flit which arrived the input port
can be captured by the output register in the destined output
port at the very next cycle. Then, the captured flit traverses the
link to the downstream router after the propagation delay of
the output register. We assumed source routing to simplify
the router design; that is, the route is decided by the source
node and just handed to the routers, and therefore the routers
only need to shift the route field of the header flit when tossing
it to the next router. We used stop-go flow control mechanism
where the almost full signal of the input FIFO indicates ‘stop’
and ‘go’ of flits. The flit width is 66b where the two MSB bits
indicate the types of the flit: Head, Body, Tail, and
Head—and—Tail (i.e. one flit packet).

Typically, an on-chip wormhole router consists of four
types of building blocks: input port, output port (or just output
register), crossbar switch, and switch allocator [30] [as shown
in Fig. 4(a)]. Also, a typical wormhole router is pipelined in
three stages: link traversal and input buffering, switch alloca-
tion, and crossbar traversal and output buffering.” Note that, in

4. Note that this does not mean that the proposed methodology is
restricted to the specific router architecture, but it can be generally applied
to any router architectures with their proper building block classifica-
tions. For instance, the 4-stage virtual channel (VC) router in Intel’s 48-
core chip multiprocessor [30] can be divided into four building blocks:
1) the input buffer, 2) the block containing the switch allocator and the
route computation unit (the two operations are done in the same pipeline
stage), 3) the block containing VC allocator and the DEMUX part of the
crossbar switch (VC allocation and buffer read are done in the same
pipeline stage), and 4) the MUX part of the crossbar switch and the output
register.

5. Separate routing stage is typically omitted when source routing or
look-ahead routing is used [31], [32].

JUN ET AL.: EXPLOITING IMPLEMENTATION DIVERSITY AND PARTIAL CONNECTION OF ROUTERS

‘clock’ed path

1437

combinational path combinational path ‘clock’ed path

i of input port of input port of output port of output port
—t 3 A 4
Switch top + +
— Allocator
Jliin Input Port Output Port
crossbar switch
Input port 0 H
H - Route
0 ; V| &
i fit_in 1 .
\ [it_out
7
\
Input port N-/ —
(a) ‘I flit_out S
lit_avail
fit_avail \ N
wr_addr |8 0 LT e o e -
A S stop
-
stop | . = 1 output_gnt \,
ti stop \ ¢ Atbiter
—
i —full/emptyf ‘\ -
\ output_ry i
; ~ - €
nput port 0 Output port 0 e
1 2 N
£ stop delays in CT stage | tf,fpmb tihe ® tgr%éb —_—
abiter [TT [e e i o o
3 Pyt o e e e iatalotated oot
! > ! S 1
2 flit_out ! tf'faﬂ“ tprop 1
I 1 1
wire 1
Input port N-1 Output port M-/ |\ tglob >

delays in LT stage

(®)

Fig.4. The architectures of router and building blocks: (a) a typical wormhole router architecture, (b) the proposed building block classification and router
architecture, and (c) the detailed architectures of the input port and the output port.

our router design, it is not only meaningless but also increases
the characterization efforts to characterize all these four types
of building blocks separately, since these building blocks are
not dedicated to their own pipeline stages (see Section 4.4). In
order to simplify the characterization process, we reduced the
types of building blocks from four to two, input port and output
port, by 1) using distributed arbiters over all output ports rather
than a centralized switch allocator, and 2) splitting the crossbar
switch into demultiplexor (DEMUX) part and multiplexor
(MUX) part and putting them into input ports and output
ports, respectively. The modified router architecture and
the details of the input port and the output port are shown
in Fig. 4(b) and (c), respectively. Only local wire bundles reside
among the ports to connect them.

The input port consists of flit FIFO and its control logics
(which is also in charge of the stop-go flow control and the
output port request), a route computation block, and MUX
and DEMUX data paths. The route computation block is in
charge of updating the selection signals of the DEMUX and
MUX only when the current flit is a Head flit, and in charge of
shifting the route field of the flit. The output port consists of an
arbiter, MUX data path, and an output register. A flit is
forwarded according to the following procedure:

* At the beginning of the LT stage, a flit captured in an
output port of an upstream router begins to traverse the
link to the downstream router, after the propagation
delay of the output register (¢,,p).

* The flit traverses the long global wires between the
upstream and the downstream routers (¢3;/).

* The flit which arrived the downstream router is success-
fully stored in the input buffer after the setup-time of the
FIFO (tifo—su), and this is the end of the LT stage.

* The flit captured in the input buffer becomes available for
the route computation, if it is at the head of the FIFO, after
the propagation delay of input FIFO. This is the beginning
of the CT stage. If the flit is a Head flit, the routing

information is updated and otherwise kept as the previ-
ous value. With the routing information, the flit and the
request signal are sent to the target output port. The delay
of this path is ;7".
In the output port, the arbitration is done for the received
request signals and the grant signals are sent back to the
input ports to update the FIFO’s read pointers. At the
same time, the flit passes through the MUX according to
the updated arbitration result, and reaches the output
register. This is the end of the CT stage, and the delay of
this path is ¢57/".
Note that the paths in the CT stage are mostly implemented
in combinational logic with some exceptions; updating the
read pointers in the input FIFO and updating the token in the
arbiter are in the clocked path. The critical path of the CT stage
isindicated with a bold dashed line in Fig. 4(c). In the following
subsection, we will introduce the router building block char-
acterization method for the presented router architecture.

4.4 Building Block Characterization and Router
Modeling
Based on the architectures of the router and the building
blocks presented in the previous subsection, we perform
characterization only for the input ports and the output ports
of their various sizes. All the possible router configurations,
including partial connections, can be covered by simple
assembly of the ports. The size of an input port is measured
by its fanout, the number of the output ports to which it is
connected. Similarly, the size of an output port is measured by
its fanin, the number of the input ports to which it is connected.
As shown in Fig. 4(c), each type of port has clock path and
combinational path inside. The combinational path of the input
port and that of the output port together comprise a clock
path. However, since we characterize them separately, each
half of the CT stage should be characterized as combinational
path in its belonging port.

1438

The characterization flow takes the following parameters
as inputs:

* Set of available clock frequencies ®, where ¢ € ® denotes
a possible clock frequency.

* Setof fractional values ¥, where ¢) € ¥ indicates the delay
of the combinational path of the port as the fraction of the
clock period.

* The maximum values of the fanout and the fanin, denoted
as 'O and FI, respectively.

In our previous work [23], the entire router is characterized
only for the clock path and it is assumed that any arbitrary
clock frequency is possible in the network. However, in real
designs, possible clock frequencies are limited due to the
implementation overheads, and therefore we assume that the
possible clock frequencies are given by the designer as an
input. The fractional value ¢ € ¥ determines the delay of the
combinational path of the port as the ratio to the given clock
period 1/¢ € ®. If the combinational path delay of an input
port tf,gg‘b is 0.3 X tay, (tax is the clock period), then that of an
output port ¢27*, which is connected to the input port, mustbe
less than or equal to 0.7 X t; so that the total delay of the CT
stage is within a clock cycle. We define the pair (¢,) as
Implementation Point of the port, and denote it with v € Y. In
the rest of the paper, the implementation point will be denoted
as the pair (¢, ¥) or v interchangeably.

The overall characterization flow is shown in Fig. 5. Each
type of portis characterized for all possible sizes (i.e. fanout or
fanin) and for all the possible combination of clock frequencies
and combinational path delays. The RTL generator is invoked
for each type and each size of the port, and RTL synthesis is
performed multiple times for every combination of ¢ € ® and
1 € W. After each synthesis, the result is checked for the
constraint violation and, if there is no violation, saved into
the building block library. The total number of RTL synthesis
needed is simply FO x FI x |®| x |¥|. For example, if the
maximum allowable size of the router is 10x10 and there are 5
possible clock frequencies and 4 combinational path delays,
we need 400 RTL synthesis (200 for each type of port). Note
that all the possible partial connection configurations of
routers can be covered with this characterization. Compared
to the previous work, the characterization method used in [23]
requires 499 RTL synthesis for 1x2 to 10x10 routers (omitting
1x1 router) only for fully connected routers, and the number
dramatically increases when the partial connection is consid-
ered. In addition to the reduction in the number of RTL
synthesis, each synthesis time is greatly shortened since the
component being synthesized is a port which is much smaller
than an entire router in the proposed method.

Ateachimplementation point, a portis characterized forits
area and power consumption as long as the delay constraints
are met. The power consumption of a port at implementation
point v, P, is modeled as follow.

Pv = leaku + ay, X f(‘l/c +6v X T X f(:llc; (1)

where f,;, and 7 are the clock frequency (measured in MHz)
and the activity (measured in MB/s) of the port, respectively.
The first term leak, is the leakage power consumption which
is independent of the clock frequency and the activity. The
second term is one part of dynamic power consumption
which is proportional only to the clock frequency (e.g. clock
network), and «, is the corresponding coefficient. The last

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

eclock freq. set (@)
ecomb. delay set (¥)
emax. fanout/fanin

4

Begin characterization

Select component type; |,
input port or output port

Select a new size of port;
fanout or fanin
Generate RTL codes of port
with fanout or fanin

Select a new clock frequency

from @ [
(fee = ¢i €P)
v

RTL synthesis with given
constraints: f.y and ¢€o™?
'

—
Analyze/save result .m

Determine combination delay
tcomb

(tcomb = tar X 1/)]_ ey, [¢
tek = 1/ feue)

End characterization

Fig. 5. The building blocks characterization flow.

termis the other part of dynamic power consumption which is
proportional to both the clock frequency and the input activity
(e.g. register) and f3, is the corresponding coefficient. The
three power-related coefficients, leak,, «,, and 3, are ex-
tracted throughout the characterization process and saved
into the building block library.

With the delay, area, and power consumption obtained for
the ports, the area and power consumption of a router can be
easily calculated by summing those of the ports inside the
router. Formally, A7“" and Pro“<, the area and power
consumption of a router r, respectively, are

router __ port
Apoter = N gvert,

peP;
router __ port
Pt =% pre (2)

peED;

where p € P, is a port in the router r, and Ag”"t and Pg"” are
their area and power consumption, respectively.

As aforementioned, the path delay of the CT stage is
modeled as the sum of 77" and ¢57"". This router modeling
may show inaccuracy due to several factors; for example, the
effect of the local wires between ports is not accounted, and
the exact values of the output loads (driving strengths) of an
input port (output port) are hard to obtain since the port is
synthesized without considering how the boundary of the
output port (input port) is synthesized. However, in our
experiment, the proposed router modeling shows only about
3% error compared to the measured values for the entire
router. The details of the validation methodology and results
will be demonstrated in Section 5.2.

4.5 Synthesis Algorithm

4.5.1 Top Level Synthesis Flow

We embedded the proposed ideas in the CEP + ERGF
network topology synthesis framework presented in [15]. For
the sake of self-containedness, we include brief introduction
to the CEP + ERGF; it is an irregular on-chip network topol-
ogy synthesis algorithm for specific applications. In the
CEP + ERGF, the design space is defined by the chained edge
partitioning (CEP), in which a network topology is represented

JUN ET AL.: EXPLOITING IMPLEMENTATION DIVERSITY AND PARTIAL CONNECTION OF ROUTERS

C Begin symhesis D

I Generate new Cdndlddt€ topology
by using CEP+ERGF [16]

for all routers

.

Evaluate cost of candidate topology
(procedure evaluate topology)] Liv -
——
n

update best
solution
EP+ERG.
termination condition
met?

I Apply pamal connection ‘

d

synthesis
phase

| Verify with SystemC simulation I

Tighten constraints

constraints met?,

Y
End synthesis

Fig. 6. The top level topology synthesis flow.

by a set of edge partitions. A topology is encoded as a set of
non-negative integer sequences produced by the enhanced
restricted growth function (ERGF). The algorithm iteratively
generates candidate topologies by the ERGF and evaluates
them until the ERGF sequence reaches its maximum. Since the
workin [15] considers only the inter-router level topology and
single implementation point, we added the features of apply-
ing partial connection and exploiting implementation diver-
sity into the CEP + ERGF.°

Finally, the top-level synthesis flow is shown in Fig. 6. In
Fig. 6, the steps in shaded boxes are added or modified parts
from the work in [15]. There are four major changes made in
this work: 1) the step for removing unused connections in
routers is added, 2) the evaluation step is enhanced so that
every building block in the candidate topology is evaluated
with its optimal implementation point assigned, 3) packet
latency model is enhanced to reflect contention latency, and
4) simulation-based verification phase is added.

Since removing unused connections in the routers is quite
straightforward, we will skip the detailed explanation for it.
For the added verification phase, an in-house cycle-count-
accurate SystemC simulator is used in which PEs are mimicked
by traffic generators. If any bandwidth or latency violation is
detected during the simulation phase, the synthesis phase is
invoked again with more tightened constraints; specifically,
bw(e)’s in CRG are multiplied or lat(e)’s are divided by a
constraint multiplier to make the synthesis phase to estimate
the bandwidth and/or latency more conservatively.

In the rest of this subsection, we will first present the details
of the modified evaluation algorithm which also performs the
implementation point assignment (Section 4.5.2). After that,
we will discuss the modified latency model (Section 4.5.3).

4.5.2 Implementation Point Assignment and Topology
Evaluation

We propose two different approaches for exploiting the
implementation diversity in the NoC topology synthesis:

6. More specifically, CEP_rand algorithm in [16] is used as inter-router
level topology synthesis algorithm. Note that the proposed idea can be
easily augmented with other iterative NoC topology synthesis algo-
rithms, such as the algorithms in [17]-[20].

1439

Procedure: evaluate_topology
Input: Topology T, Port library Lib
Output: Costr

¢ = get_required_frequency(T);
Costr = 0;
foreach r € R
foreach p € P,
p —set_implementation_point(¢, ¥min);
evaluate_port(p, Lib);
endfor
sort_by_cost(F;.);
Cost, = 0;
foreach p € P,
p —squeeze_down_comb_path(¢, Lib);
Cost, += evaluate_port(p, Lib);
endfor
Costy += Cost,;
15: endfor

—_
PRI H XN

—_ =

Fig. 7. The procedure to evaluate a topology.

Procedure: squeeze_down_comb_path
Input: ¢, Lib

Yy = find_max_allowable_q(Pconnected);
Costpest = INFINITY;
foreach ¢ € U (¢ < tp)
Cost = calculate_cost(¢, 1), Lib);
if (Cost < Costpest) then
Costpest = Cost;
wbest - 7/1,'
endif
endfor
this— ¢_fixed = true;

—_

Fig. 8. The procedure to assign the best implementation point to the
combinational path of a port.

the post-process approach and the in-process approach. In the
former, the topology synthesis process is done first with a
single implementation for the routers, and then the resulting
topology is optimized just once at the end by substituting the
ports with their best-fitting implementations. Therefore,
using diverse implementations does not affect the determina-
tion of the topology at all. On the other hand, the latter
approach tries to find the best fitting implementation of every
port for every candidate topology. Since all the candidate
topologies are evaluated with their optimal implementations
assigned, using the diverse implementations can affect the
determination of the topology with the in-process approach.
In the rest of this subsection, the in-process approach will be
introduced in detail, and then the post-process approach can
be understood straightforwardly.

The detailed algorithm for evaluate_topology at line 6 of
Fig. 6 is shown in Fig. 7. The procedure evaluate_topology
starts by obtaining the minimum required clock frequency ¢
from the given topology 7" (line 1). Since we assume the single
clock frequency for the network, this step determines ¢ for all

1440

base traffic utilization

base
input port

70—
7 60 [
°
L Q 50
> destination £ 4

3
. outputport & 5,
N competing =

T
. 2
input ports =2

015 015
Base Utilization ~ 0.1 Interfering Utilization

interfering traffic
utilization

() (b)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

02 025 0

0.15 e
Base Utilization 0.1~ 0.1 Interfering Utilization

oA T g5 02
Base Utilization 0.1 0.1 Interfering Utilization

(© (d)

Fig. 9. Latency modeling, (a) modeling environment, (b) regressed latency when N.. = 1, (c) regressed latency when N, = 5, and (d) regressed Sy, v .

the ports in the current network candidate. The following
procedure is for determining v for each port. The ports cannot
be optimized independently since there exist connections
between the combinational paths of the input ports and those
of the output ports, and for all the connected paths,
t;’;’;w + t,‘;ﬁjft’;,b must be less than or equal to the clock period.
Therefore, finding the optimal assignment of ¢ for all the ports
isnota simple problem. In this work, we use a greedy approach
in assigning ¢ for each port. First, from line 4 to 7,
the minimum value of v, ¥, is assigned for all the ports
and they are evaluated. In other words, all the ports are
evaluated at their fastest implementations for the combina-
tional paths. In the next step, at line 8, the ports are sorted in a
descending order according to their evaluated power con-
sumption. At line 11, the procedure squeeze_down_comb_
path is performed to assign v for each port according to the
sorted order. This procedure replaces the combinational path
of the port with its least power-consuming possible imple-
mentation (figuratively, squeezes down the port to its smallest
possible state). The rationale behind this approach is to
replace the most power-consuming port with its least
power-consuming implementation. More detailed explana-
tion will be given later in this subsection. Now that the port is
assigned the proper 1), its implementation point is fixed and
therefore it is evaluated again for the new implementation
point (line 12).

The details of squeeze_dow_comb_path at line 11 of Fig. 7 is
shown in Fig. 8. At the beginning of the procedure, it first
determines how much the port can be squeezed down (line 1);
the port may be connected to one or more ports of the opposite
type which are already assigned their +. In this case, the port
may not be assigned its least power-consuming implementa-
tion since the combinational path delay must be small enough
to satisfy the clock frequency when combined with the com-
binational paths of the connected ports (P«""““d). Therefore,
the upper bound of 1 for this port, ,; is obtained first by
searching the ports to which it is connected. Within the upper
bound, all possible ¢ is tested to find the least-power con-
suming implementation from line 3 to 9. Note that we test all
the possible ¢ rather than taking the 1, for the port for the
sake of better generality of the algorithm; a larger 1) means
longer delay of the combinational path of the port, and an
implementation with longer (i.e. loose) delay constraint tends
to consume less power. However, this tendency cannot be
guaranteed especially when the implementation relies on the
automated design flows (e.g. RTL synthesis and auto P&R).
After the best ¢ for this port, ¢ is found, the procedure ends
by setting the flag “1)_fixed” to true. This flag is used when
another port connected to this port tries to determine its),

(line 1). More specifically, a port with “¢_fixed =true” returns
its assigned 1 when called by the procedure find max_
allowable_t), whereas a port with “¢_fixed =false” returns
Ymin S0 that the requesting port can be freely squeezed down
without upper bound.

In the post-process approach, the procedure evaluate._
topology is performed with only a single implementation for
each port during the topology synthesis, while skipping the
procedure squeeze_down_comb_path. Then, at the end of the
procedure NoC_topology_synthesis, the procedure
evaluate_topology is invoked again with using, at this time,
all the implementations and the procedure squeeze_down_
comb_path.

The additional complexity of the proposed method can be
broken down into the following three components: 1) pre-
evaluation of the ports (line 6 in Fig. 7), 2) sorting the ports
(line 8 in Fig. 7), and 3) squeezing down the combinational
paths of the ports (line 11 in Fig. 7). To analyze the complexity of
the three components, let the maximum number of ports on a
router be Np. Then, the complexity of evaluating all the ports is
O(Np) since evaluation of one port can be done with O(1)
complexity. The complexity of sorting the ports is typically
O(NplogNp). The complexity of the third component is the
multiplication Np and the complexity of the procedure
squeeze_down_comb_path. The complexity of squeeze_down_
comb_path is O(Np) (line 1 in Fig. 8) +O(|¥|) (line 3 to 9 in
Fig. 8). Accordingly, the additional complexity of the proposed
method is O(Np) + O(Nplong) + O(Np X (NP + |\1/|)) =
O(maz(N%, Np x |¥[)). Note that these additional computa-
tions occur only once at the end of the synthesis phase in the
post-process approach, whereas they occur in every candidate
topology evaluation step in the in-process approach.

4.5.3 Modified Latency Model

The work in [15] used the simple hop-count level latency
estimation which cannot capture the contention latency. That
simple latency model may produce obsolete results especially
for the application having high communication volume.
Therefore, we changed the latency model to reflect the con-
tention latency.

We follow the latency modeling methodology used in [32]
with some modifications. Same as in [32], we model the packet
latency as a function of base traffic utilization and interfering
traffic utilization; suppose a situation where an input port P, in
a router competes for an output port P, with the other input
ports of the router, as shown in Fig. 9(a). Also, suppose that we
are interested in the latency that P; experiences to . Insuch a
situation, we call P, as base input port and its utilization of P, as

JUN ET AL.: EXPLOITING IMPLEMENTATION DIVERSITY AND PARTIAL CONNECTION OF ROUTERS

TABLE 1
Regression Results
Co c1 c2 c3 c4
Laty, . | 21.85 | 775 [-27.12 | 24.35 | 3020
Sv,.U; -5.64 | 2375 | 69.29 | -349.9 | 2545

base traffic utilization (denoted as Uj). The other input ports of
the router that compete for P, with P; are named as competing
input ports and their total utilization of P, is named as
interfering traffic utilization (denoted as U).”

We made two major changes to the latency model used in
[32]: 1) we reflect the dependence on the number of competing
input ports (denoted as N, hereafter) and 2) use higher order
equation for the regression. We calculate the latency with a
specific N, (Lat‘%“U’) with the following regression model.

Latg;-,U,, =co+ c Uy + cU; + csUU; + C4U§Ui2, (3)

where ¢y to ¢4 are the fitting coefficients.® The regression
results when N, = 1 and N, = 5 are shown in Fig. 9(b) and
(c), respectively. The results show the obvious dependence of
the latency on the number of competing input ports. We
observed that the latency increases linearly as N, increases
at specific (Uy, U;). We define the slope at (U, U;) as Sy, v,. We
also observed that the dependence of Sy, y, on Uy, and U; is
similar to Laty;, ;. Therefore, we use the same regression
model in Eqn. 3 for Sy, ¢, and the result is shown in Fig. 9(d).

Finally, we estimate the packet latency with the following
equation.

LatN(\U,)_,U,, = L(Lt[ljb‘U‘ + (N(— 1) X SUI;-,U:’ (4)

The obtained fitting coefficients for Lat}, ;, and Sy, y, are
listed in Table 1. '

5 EXPERIMENT

5.1 Experiment Environment

The evaluation results of the proposed method are presented
in this section. In the first part of the experiment, we will
validate the proposed router characterization and modeling
method. In the second part, we will demonstrate the effec-
tiveness of the proposed NoC topology synthesis method
which exploits the partial connection and the implementation
diversity of routers. The router characterization process is
fully automated by our in-house Verilog RTL and characteri-
zation script (for synthesis, and timing and power analysis)
generators. The topographical synthesis is performed for the
RTL synthesis to minimize inaccuracy of the frontend-only
characterization, using Synopsys Design Compiler and 90 nm
design kit. Detailed synthesis environment is summarized at
the top of Table 2. The timing and power analysis is done
using Synopsys PrimeTime. The parameters for the router
architecture and characterization are shown at the middle and
bottom of Table 2, respectively. The entire characterization
process, from the RTL and script generation to building the

7. Refer to [33] for the formal definitions of the base traffic utilization
and the interfering traffic utilization.

8. The latency model in [33] does not have the last term of the
righthand-side of Eqn. 3.

1441

TABLE 2
Configurations of Router and Its Characterization

RTL synthesis environment
Tech. library | Synopsys 90nm
P/V/T points | typical/typical (1.2V)/all (multi-Vrg)
Other options | - register-level clock gating
- topographical synthesis
- flatten design

Router characterization
@ (unit: Mhz) | {400, 600, 800, 1000}
v | {0.2,04, 0.6, 0.8}

FO/FI | 10/10
Router configuration
flit width | 66bit
input FIFO depth | 8 flits

‘almost_full” threshold | 2

TABLE 3
Benchmark Description

Description
mpeg4 decoder [5]
multimedia SoC [14]
mobile multimedia player [18]
mobile application processor [18]
game SoC [18]

complete port library, was done within roughly a day using
single core virtual machine with 512 MB main memory. The
host machine has 2.8 GHz processor and 8 GB main memory.

For the evaluation of our NoC topology method, we applied
the method to the five benchmarks used in [5], [13], [17]. We
multiplied the communication volumes of the benchmarks
with three different factors so that the wider range of the
implementation points can be exploited during the synthesis.”
The characteristics of the benchmarks are summarized in
Table 3 where the columns labeled |V| and |E| show the
numbers of PEs and communication edges, respectively. In
the simulation phase of our method, we assume that packet
size is 512D (flit size is 64b, same as the data width of a port).
Therefore, a packet consists of 1 head flit and 8 payload flits.

5.2 Validation of Router Modeling
In order to validate the proposed port-based router modeling
method, we compare the values from our router modeling to
those from the actual measurement. The methodology used to
validate the proposed modeling is shown in Fig. 10(a). Using
the actual implementations of the ports, a top-level router RTL
code can be simply assembled by selecting the ports of the
desired sizes and implementation points, and connecting each
other. In the next step, we set the ports as “don’t touch”
modules since they are already in their synthesized form (i.e.
netlist) and we want their implementations not to be changed.
After that, we perform synthesis for the router, which will likely
end up with optimizing only the local wires between the ports.
Finally, the characteristics of the resulting router implementa-
tion are measured and compared to the values from the model.
The router configuration and the implementation points of
its ports are shown in Fig. 10(b), and the clock frequency and

9. The original benchmarks have not enough amount of traffic to
exploit the clock frequencies in ® other than the minimum clock frequency
(400 MHz).

Sfanout=2,
¢ = 800Mhz,
P =02

Port library II
Assemble top-level router
using ports’ netlist

Set the ports to
don’t touch modules

Janout=3,
¢ = 600Mhz,
P =0.6

fanin=3,
¢ = 1000Mhz,
P =02

Estimated router
characteristics using
proposed model

Sfanout=4,
¢ = 400Mhz,
P =04

Synthesize and characterize
entire router

it

fanout=5,
i = 1000Mhz,
P =08

Compare results

(a) (®)

Fig. 10. Router model validation, (a) the validation method and (b) the
router configuration and implementation points of the ports.

the input bandwidth (which determines toggle rate) assumed
are 400 MHz and 600 MB/s, respectively. The results are
shown in Table 4. The third row, labeled as “Delay”, is for the
longest CT stage delay [the path indicated by the bold dashed
line in Fig. 4(c)] among the CT stages paths between the input
ports and the output ports. The dashed rectangle in Fig. 10(b)
indicates the path which has, by measurement, the longest CT
stage delay. Note that the expected longest CT stage delay is
2.5 ns between the 3rd input port and the 5th output port
(2.5 x 0.4 4 2.5 x 0.6), but the actual path and the delay value
is different from the expectation. It is because the the expected
delay is given as the upper bound for the RTL synthesis and
therefore the resulting implementation can have any smaller
delay than expected, in case of successful synthesis. The result
shows that the accuracy of the proposed model is roughly
about 97% for all the metrics (specifically, from 96.813% to
97.621% in absolute values). We believe that the result con-
vinces the validity of the proposed router modeling method
including the building block characterization presented in
Section 4.4.

5.3 Evaluation of the Topology Synthesis Method
The effectiveness of our NoC topology synthesis method
presented in Section 4.5 is demonstrated in this subsection. '’
We compared the post-process approach and the in-process
approach to the conventional approach which considers only
a single implementation for the routers. Specifically, the
following six cases will be compared:

* The in-process optimization is used but the partial con-
nection of routers is not exploited (NOPAR + INP).

* The partial connection is exploited but only a single
implementation point with ¢ = 1000 M Hz is used
(SIG1000).

* The partial connection is exploited but only a single
implementation point with ¢ =800 MHz is wused
(SIG800).

10. Due to the space limitation, we present only the most important
subset of the results in the paper. To compensate for this limitation, a
supplement document (which can be found in the Computer
Society Digital Library at https://doi.ieeecomputersociety.org/
10.1109/TC.2013.294) is prepared which contains more details of the
reported results as well as sets of other experimental results. In our
experiments, no case was found where the bandwidth/latency constraint
violation is detected in the simulation phase. The measured latencies can
be also found in the supplement document. The location of the document
is http://dtl.yonsei.ac.kr/others/jun_exploiting_supplement.pdf.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

TABLE 4
Router Model Validation Results

Metric Measured | Model | Error (%)
Area (mm?) 0.136 0.141 3.187
Delay (ns) 1.739 1.730 0.493
Power (mW) 25.157 24.573 -2.379

* The post-process optimization is performed after SIG1000
(SIG1000 + PO).

* The post-process optimization is performed after SIG800
(SIG800 + PO).

* The partial connection is exploited and the in-process
optimization is used (INP).

Note that SIG1000 and SIG800 represent for the method in
[24] in which the partial connection of switches is exploited in
the synthesis process but the implementation diversity is not
considered. On the other hand, NOPAR + INP represents for
the method in [23] in which the implementation diversity is
exploited but the partial connection of routers cannot be
considered due to the limitation of its router characterization
and modeling method. For SIG1000 and SIG800, 1) = 0.4 and
1 = 0.6 are assumed for the input ports and the output ports,
respectively.

We first compare NOPAR + INP and INP to show the
effectiveness of exploiting the partial connection of routers
together with the implementation diversity, and this compar-
ison directly shows the advantage of our method over the
method in [23]. The power consumptions of NOPAR + INP
and INP are shown in Fig. 11, where values are normalized to
those of NOPAR + INP. The numbers (with the prefix x’)
shown above the benchmark symbols are the bandwidth
multiplication factors used to artificially multiply the com-
munication volumes of the benchmarks. The results show that
the power consumption is reduced by up to 67.8% (G5_x2)
and 40.0% on average. This reduction in power consumption
can be achieved by 1) reducing the number of routers used
and 2) minimizing the sizes of ports inside the routers.

Secondly, we discuss the effectiveness of exploiting the
implementation diversity by comparing SIG1000, SIG800,
SIG1000 4+ PO, SIG800 + PO, and INP. Note that the partial
connection is considered in the same way for all the five
approaches. The total power consumption of the five ap-
proaches is shown in Fig. 12, where the values are normalized
to those of SIG1000. The results show that applying only the
post-process optimization brings considerable amount of
power reduction compared to the single implementation
approaches. Quantitatively, the post-process optimization

<
%

I
=N

o e
[SEES

Power Consumption of INP
Normalized to NOPAR+INP
<

x3.5| x4 |x4.5| x4

Fig. 11. Effect of considering the partial connection together with the
implementation diversity.

JUN ET AL.: EXPLOITING IMPLEMENTATION DIVERSITY AND PARTIAL CONNECTION OF ROUTERS

1443

ESIG800 ®mSIG1000+PO @ SIG800+PO OINP

g !
£3009 4
2
g‘% 0.8
2807 1
S3
K06
5%
zE£0s
°'£ x3.5 ‘ x4
Gl

Fig. 12. Effect of exploiting the implementation diversity and evaluation of the two different approaches: the post-process and the in-process. The values

are normalized to those of SIG1000.

reduces the power consumption by up to 28.1% (G3_x6) and
15.8% on average when applied to SIG1000. When applied to
SIG800, the reduction is up to 13.4% (G2_x4) and 6.5% on
average. Note that the power reduction by the post-process
optimization is achieved solely by replacing the implementa-
tion points of the ports, while the network topology and the
internal connections of the routers are not affected.

Using the in-process optimization, the power reduction is
up to 28.1% (G3_x6) and 19.1% on average compared to
SIG1000, and up to 18.5% (G2_x5) and 9.4% on average
compared to SIG800. Also, even compared to the post-process
optimization, the in-process optimization shows further power
reduction. The power reduction is up to 12.0% (G4_x9) and
10.1% (G2_x5), and 3.7% and 3.1% on average, compared to
SIG1000 + PO and SIG800 + PO, respectively. The in-process
optimization often produces different topologies compared to
the post-process optimization. More specifically, the in-process
optimization shows improvement over the post-process opti-
mization by choosing different topologies for G1_x4, G1_x4.5,
G2_x5, G2_x6, G4_x8, and G4_x9. This result proves that our
idea, exploiting implementation diversity, does help improve
the quality of NoC topology synthesis process.

The proposed method may increase the synthesis time
since it requires the additional implementation point assign-
ment procedure. In our experiment, we found that the addi-
tional time for the post-process optimization is unmeasurably
small, but the in-process method increased the synthesis time
by up to 249% (G1_x4.5) and 57.8% on average. Therefore, the
post-process optimization can be preferably used if the syn-
thesis time is critical, and the in-process optimization can be
used if the quality is the most crucial factor.

6 CONCLUSION

In this paper, we proposed a NoC topology synthesis meth-
odology which exploits diverse implementations of on-chip
routers. Thanks to the proposed port-based router charac-
terization and modeling method, the partial connection of
routers can be effectively considered during the topology
synthesis, and at the same time, each individual port can take
advantage of exploiting its multiple implementations. The
conventional router characterization methods cannot sup-
port either the implementation diversity nor the partial
connection in the topology synthesis, whereas the proposed
router characterization and modeling method covers both
properties. The validation results show that our router model
is accurate enough (within 3% error rate). In the evaluation of
our NoC topology synthesis method, it is shown that the

proposed method can considerably improve the design
quality; compared to the method in which the implementa-
tion diversity is exploited but the partial connection is not,
the proposed method can reduce the power consumption by
up to 67.8%; compared to the method in which the partial
connection is exploited but the implementation diversity is
not, the amount of power reduction is by up to 28.1%.

We decided not to take the floorplain effect into account in
this work, and left it as our future work; we plan to extend the
proposed work to a co-synthesis method of the NoC topology
and the floorplan where the implementation diversity of links
can be considered together. Also, we plan to validate the
method in more dynamic traffic environment.

ACKNOWLEDGMENT

This work was supported in part by Basic Science Research
Program through the National Research Foundation (NRF)
funded by the Ministry of Education (2013R1A1A2011208),
by the IDEC and by Samsung Electronics.

REFERENCES

[1] W.]. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. Des. Autom. Conf., 2001, pp. 684-689.

[2] G. De Micheli, C. Seiculescu, S. Murali, L. Benini, F. Angiolini, and
A. Pullini, “Networks on chips: From research to products,” in Proc.
Des. Autom. Conf., 2010, pp. 300-305.

[3] R.Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in NOC design: System, micro-
architecture, and circuit perspectives,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 28, no. 1, pp. 3-21, Jan. 2009.

[4] K. Goossens, J. Dielissen, and A. Radulescu, “Athereal network on
chip: Concepts, architectures, and implementations,” IEEE Des. Test
Comput., vol. 22, no. 5, pp. 414-421, Sep./Oct. 2005.

[5] S. Murali and G. De Micheli, “Sunmap: A tool for automatic
topology selection and generation for NoCs,” in Proc. Des. Autom.
Conf., 2004, pp. 914-919.

[6] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip architecture
for gigascale systems-on-chip,” IEEE Circuits Syst. Mag., vol. 4,no. 2,
pp- 18-31, 2004.

[7] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” J. Syst. Archit.,
vol. 50, no. 2-3, pp. 105-128, 2004.

[8] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. De Micheli, and L. Raffo, “Designing application-specific
networks on chips with floorplan information,” in Proc. Int. Conf.
Comput.-Aided Des., 2006, pp. 355-362.

[9] A.Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Efficient
synthesis of networks on chip,” in Proc. 21st Int. Conf. Comput. Des.,
2003, pp. 146-150.

[10] U. Y. Ogras and R. Marculescu, “Energy-and performance-driven
noc communication architecture synthesis using a decomposition
approach,” in Proc. Conf. Des. Autom. Test Eur., 2005, pp. 352-357.

1444

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

U. Y. Ogras and R. Marculescu, “"It’s a small world after all":
NoC performance optimization via long-range link insertion,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 7, pp. 693-706,
July 2006.

K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-programming-
based techniques for synthesis of network-on-chip architectures,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 4,
pp. 407420, Apr. 2006.

M.Jun, S. Yoo, and E. Y. Chung, “Mixed integer linear programming-
based optimal topology synthesis of cascaded crossbar switches,”
in Proc. Asia South Pacific Des. Autom. Conf., 2008, pp. 583-588.

M. Jun, S. Yoo, and E. Y. Chung. “Topology synthesis of cascaded
crossbar switches,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 28, no. 6, pp. 926-930, June 2009.

M. Jun and E. Y. Chung, “Design of on-chip crossbar network
topology using chained edge partitioning,” Comput. J., vol. 53,
no. 7, p. 904, 2010.

J. Yoo, D. Lee, S. Yoo, and K. Choi, “Communication architecture
synthesis of cascaded bus matrix,” in Proc. Asia South Pacific Des.
Autom. Conf., 2007, pp. 171-177.

J. Yoo, S. Yoo, and K. Choi, “Topology/floorplan/pipeline co-
design of cascaded crossbar bus,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 8, pp. 1034-1047, Aug. 2009.

S. Yan and B. Lin, “Application-specific network-on-chip architec-
ture synthesis based on set partitions and steiner trees,” in Proc. Asia
South Pacific Des. Autom. Conf., 2008, pp. 277-282.

J. Chan and S. Parameswaran, “Nocout: NoC topology generation
with mixed packet-switched and point-to-point networks,” in Proc.
Asia South Pacific Des. Autom. Conf., 2008, pp. 265-270.

Synopsys. Topographical technology [online]. Available: http: // www.
synopsys.com/ tools/implementation/rtlsynthesis /dcultra/Pages/
default.aspx

H. S. Wang, X. Zhu, L. S. Peh, and S. Malik, “Orion: A power-
performance simulator for interconnection networks,” in Proc. 35th
Annu. IEEE/ACM Int. Symp. Microarchitecture, 2002, pp. 294-305.
A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “Orion 2.0: A fast and
accurate NoC power and area model for early-stage design space
exploration,” in Proc. Conf. Des. Autom. Test Eur., 2009, pp. 423-428.
M. Jun, S. Yoon, and E. Y. Chung, “Exploiting multiple switch
libraries in topology synthesis of on-chip interconnection network,”
in Proc. Conf. Des. Autom. Test Eur., 2010, pp. 1390-1395.

M. Jun, D. Woo, and E. Y. Chung, “Partial connection-aware topol-
ogy synthesis for on-chip cascaded crossbar network,” IEEE Trans.
Comput., vol. 61, no. 1, pp. 73-86, Oct. 2010.

M. Srinivasan and G. De Micheli, “An application-specific design
methodology for stbus crossbar generation,” in Proc. Conf. Des.
Autom. Test Eur., 2005, pp. 1176-1181.

S. Murali, L. Benini, and G. De Micheli, “An application-specific
design methodology for on-chip crossbar generation,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 7, pp. 1283-1296,
July 2007.

S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-driven bus
matrix synthesis for MPSoC,” in Proc. Asia South Pacific Des. Autom.
Conf., 2006, pp. 30-35.

S. Pasricha and N. Dutt, “Cosmeca: Application specific co-synthesis
of memory and communication architectures for MPSoC,” in Proc.
Conf. Des. Autom. Test Eur., 2006, pp. 700-705.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl et al.,
“A 48-core ia-32 message-passing processor with dvfs in 45 nm
cmos,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC’10), 2010, pp. 108-109.

A. Banerjee, P. T. Wolkotte, R. D. Mullins, S. W. Moore, and G. J. M.
Smit, “An energy and performance exploration of network-on-chip
architectures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 17, no. 3, pp. 319-329, Mar. 2009.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 6, JUNE 2014

[31] J.Howard, S. Dighe,S. R. Vangal, G. Ruhl, N. Borkar, S. Jainetal., “A
48-core ia-32 processor in 45 nm CMOS using on-die message-
passing and dvfs for performance and power scaling,” IEEE].
Solid-State Circuits, vol. 46, no. 1, pp. 173-183, Jan. 2011.

[32] Y.Jang,].Kim,and C.M. Kyung, “Topology synthesis for low power
cascaded crossbar switches,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 29, no. 12, pp. 2041-2045, Dec. 2010.

Minje Jun (M’08) received the BS, MS, and PhD
degrees in electrical and electronic engineering
from Yonsei University, Seoul, Korea, in 2006,
2008, and 2013, respectively. He is now with
System LSI Business of Samsung Electronics.
His research interests include system-on-chip ar-
chitecture and network-on-chip with the special
emphasis on their design automation.

Won Woo Ro (M'05) received the BS degree in
electrical engineering from Yonsei University,
Seoul, Korea, in 1996, and the MS and PhD
degrees in electrical engineering from the Univer-
sity of Southern California, Los Angeles, in 1999
and 2004, respectively. He worked as a research
scientist in the Electrical Engineering and
Computer Science Department, University of
California, Irvine. He currently works as an asso-
ciate professor in the School of Electrical and
Electronic Engineering, Yonsei University. Prior
tojoining Yonsei University, he has worked as an assistant professorin the
Department of Electrical and Computer Engineering, California State
University, Northridge. His industry experience also includes a college
internship at Apple Computer, Inc., and a contract software engineer in
ARM, Inc. His research interests inlude high-performance microprocessor
design, compiler optimization, and embedded system designs.

Eui-Young Chung (SM'99-M'06) received the
BS and MS degrees in electronics and computer
engineering from Korea University, Seoul, Korea,
in 1988 and 1990, respectively, and the PhD
degree in electrical engineering from Stanford
University, California, in 2002. From 1990 to
2005, he was a principal engineer with SoC
R&D Center, Samsung Electronics, Yongin,
Korea. He is currently a professor with the School
of Electrical and Electronic Engineering, Yonsei
University, Seoul, Korea. His research interests
include system architecture and VLSI design, including all aspects of
computer-aided design with the special emphasis on low-power applica-
tions and flash memory applications.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

